China Standard FCL Flexible Shaft Couplings for Reducer and Motor

Product Description

SC Transmission FCL Flexible Shaft Couplings for Reducer and Motor


Product Description

FCL Coupling/Shaft Coupling /Pin & Bush Coupling /FCL Flexible Coupling/NBK FCL Coupling is widely used for its compacts designing, easy installation, convenient maintenance, small and light weight. 

As long as the relative displacement between shafts is kept within the specified tolerance, couplings will operate the best function and have a longer working life.

Thus it is greatly demanded in medium and minor power transmission systems driven by motors, such as speed reducers, hoists, compressors, conveyors, spinning and weaving machines and ball mills.

Product Parameters

SIZE     D D1 d1 L C n-M kg
FCL90 4 4000 90 35.5 11 28 3 4-M8 1.7
FCL100 10 4000 100 40 11 35.5 3 4-M10 2.3
FCL112 16 4000 112 45 13 40 3 4-M10 2.8
FCL125 25 4000 125 65 50 13 45 3 4-M12 4
FCL140 50 4000 140 71 63 13 50 3 6-M12 5.4
FCL160 110 4000 160 80 15 56 3 8-M12 8
FCL180 157 3500 180 90 15 63 3 8-M12 10.5
FCL200 245 3200 200 100 21 71 4 8-M20 16.2
FCL224 392 2850 224 112 21 80 4 8-M20 21.3
FCL250 618 2550 250 125 25 90 4 8-M24 31.6
FCL280 980 2300 280 140 34 100 4 8-M24 44
FCL315 1568 2050 315 160 41 112 4 10-M24 57.7
FCL355 2450 1800 355 180 60 125 5 8-M30 89.5
FCL400 3920 1600 400 200 60 125 5 10-M30 113
FCL450 6174 1400 450 224 65 140 5 12-M30 145
FCL560 9800 1150 560 250 85 160 5 14-M30 229
FCL630 15680 1000 630 280 95 180 5 18-M30 296



Company Profile



/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

shaft coupling

Specific Safety Precautions When Working with Shaft Couplings

Working with shaft couplings involves handling rotating machinery and mechanical components. To ensure the safety of personnel and prevent accidents, specific safety precautions should be followed during installation, maintenance, and operation:

1. Lockout-Tagout (LOTO):

Prior to any work on machinery involving couplings, implement a lockout-tagout procedure to isolate the equipment from its power source. This ensures that the machinery cannot be accidentally energized during maintenance or repair, protecting workers from potential hazards.

2. Personal Protective Equipment (PPE):

Always wear appropriate personal protective equipment (PPE), including safety goggles, gloves, and appropriate clothing, when working with shaft couplings. PPE helps protect against potential hazards such as flying debris, sharp edges, or contact with moving parts.

3. Proper Training and Supervision:

Only trained and authorized personnel should work with shaft couplings. Ensure that workers have the necessary knowledge and experience to handle the equipment safely. Adequate supervision may be required, especially for less-experienced personnel.

4. Inspection and Maintenance:

Regularly inspect shaft couplings and associated components for signs of wear, damage, or misalignment. Address any issues promptly to prevent equipment failure and potential accidents.

5. Follow Manufacturer’s Guidelines:

Adhere to the manufacturer’s instructions and guidelines for installation, operation, and maintenance of the specific coupling model. Improper use or deviation from recommended procedures may compromise safety and void warranties.

6. Avoid Overloading:

Do not exceed the torque and speed limits specified by the coupling manufacturer. Overloading a coupling can lead to premature failure and pose safety risks to operators and nearby equipment.

7. Shaft Guards and Enclosures:

Install appropriate guards and enclosures to prevent accidental contact with rotating shafts and couplings. These safety measures help reduce the risk of entanglement and injuries.

8. Zero Energy State:

Ensure that all stored energy in the equipment, such as compressed air or hydraulic pressure, is released and the equipment is in a zero energy state before starting work.

9. Avoid Loose Clothing and Jewelry:

Remove or secure loose clothing, jewelry, and other items that could get caught in moving parts.

10. Maintain a Clean Work Area:

Keep the work area clean and free from clutter to avoid tripping hazards and facilitate safe movement around the machinery.

By following these safety precautions, personnel can minimize the risks associated with working with shaft couplings and create a safer working environment for everyone involved.

“`shaft coupling

Can Shaft Couplings Handle Reversing Loads and Shock Loads Effectively?

Yes, shaft couplings are designed to handle both reversing loads and shock loads effectively, but the capability depends on the specific type of coupling and its design.

Reversing Loads:

Many shaft couplings, such as elastomeric couplings, gear couplings, and grid couplings, can handle reversing loads without any issue. Reversing loads occur when the direction of the torque changes periodically, causing the shafts to rotate in opposite directions. The flexibility of elastomeric couplings and the sturdy design of gear and grid couplings allow them to accommodate these reversing loads while maintaining reliable torque transmission.

Shock Loads:

Shock loads are sudden and high-magnitude forces that occur during start-up, sudden stops, or impact events. Shaft couplings with shock-absorbing features, such as elastomeric couplings and grid couplings, excel at handling shock loads. The elastomeric material in elastomeric couplings and the grid element in grid couplings act as shock absorbers, reducing the impact on the connected equipment and minimizing the risk of damage to the coupling itself.

It’s essential to select the appropriate coupling type based on the specific application’s requirements, including the magnitude and frequency of reversing loads and shock loads. Some couplings may have limitations on the amount of shock load they can handle, so it’s crucial to refer to the manufacturer’s specifications and guidelines for proper coupling selection.

In heavy-duty applications with high reversing loads and shock loads, it may be necessary to consider specialized couplings designed explicitly for such conditions, like disc couplings or fluid couplings, which can offer even better performance in handling these challenging load conditions.

“`shaft coupling

Advantages of Using Shaft Couplings in Connecting Rotating Shafts

Shaft couplings offer several advantages in connecting rotating shafts in mechanical power transmission systems. These advantages contribute to the efficiency, reliability, and versatility of various industrial applications. Here are the key benefits of using shaft couplings:

1. Misalignment Compensation:

Shaft couplings can accommodate different types of misalignment, including angular, parallel, and axial misalignments. This capability ensures that the connected shafts can continue to operate smoothly even if they are not perfectly aligned, reducing stress on the equipment and minimizing premature wear.

2. Vibration Damping:

Some types of shaft couplings, particularly those with flexible elements, offer vibration damping properties. They can absorb shocks and vibrations caused by uneven loads or sudden changes in operating conditions, improving the overall reliability and lifespan of the connected machinery.

3. Shock Absorption:

Shaft couplings with flexible elements can also absorb and cushion shock loads, protecting the connected components from damage and preventing system failures in high-impact situations.

4. Torque Transmission:

Shaft couplings are designed to transmit torque from one shaft to another efficiently. They ensure that the rotational motion of the driving shaft is effectively transferred to the driven shaft, allowing the equipment to perform its intended function.

5. Overload Protection:

Certain types of shaft couplings, such as shear pin couplings, act as safety devices by providing overload protection. In case of excessive torque or shock loads, the shear pin in the coupling will fail, disconnecting the driving and driven shafts and preventing damage to the equipment.

6. Angular Flexibility:

Shaft couplings with angular flexibility can handle small angular misalignments between the shafts, compensating for shaft deflection or movement due to external forces.

7. Easy Installation and Maintenance:

Shaft couplings are generally easy to install and require minimal maintenance. They are available in various designs, sizes, and materials to suit different applications and operating conditions.

8. Versatility:

Shaft couplings are versatile components used in a wide range of industries and applications. They can be found in machinery for material handling, manufacturing, mining, transportation, and more.

9. Cost-Effectiveness:

Using shaft couplings eliminates the need for rigid connections between shafts, which can be costly and difficult to implement, especially in situations where misalignment is prevalent. Shaft couplings provide a cost-effective solution for efficient power transmission.

Overall, shaft couplings play a crucial role in connecting rotating shafts, ensuring smooth power transmission, protecting equipment from misalignment-related issues, and enhancing the overall performance and reliability of mechanical systems.

China Standard FCL Flexible Shaft Couplings for Reducer and Motor  China Standard FCL Flexible Shaft Couplings for Reducer and Motor
editor by CX 2024-03-01


Leave a Reply

Your email address will not be published. Required fields are marked *